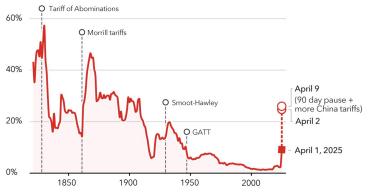
Monetary-Fiscal-Capital Account Interactions in Small Open Economies

12th Economic Research Colloquium

José Ferrer C.


University of Virginia

April 30, 2025

Highest US Tariff Rate in a Century

US tariffs are highest in a century, global tariffs are also rising sharply

Effective average tariff rate, United States

Source: IMF, World Bank

Motivation

- → Trade policy (tariffs) are at the center of current policy discussion
- \rightarrow Consensus is that tariffs will be inflationary. What's the story?

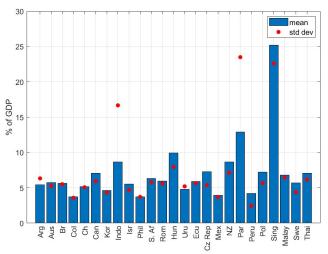
$$P_{t} = \left[(1 - \gamma) P_{Ht}^{1-\theta} + \gamma ((1 + T) P_{Ft})^{1-\theta} \right]^{\frac{1}{1-\theta}}$$

- \rightarrow What about P_{Ht} ?
- \rightarrow GE effects of higher tariffs include:
 - \rightarrow how households respond, how firms respond
 - → how M and F polices respond
- \rightarrow We are missing a clear transmission mechanism between trade policy and M-F policies

Motivation

→ Tariffs are just another form of **capital account policy**

$$KA = -CA$$

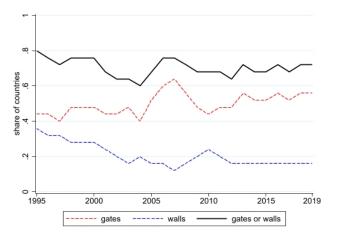

- → KA policies: broad type of policies related to the flow of capitals in and out of the country e.g. capital controls, FX interventions, capital account regulations
- \to A MFK framework of price determination useful to understand π and ER dynamics under a very broad class of policies
- → Well-established welfare consequences of price instability Benigno and Woodford, 2003; De Paoli, 2009; Gali and Monacelli, 2005

Capital Account Policies in EMEs

- \rightarrow EME have a long history of high price instability often related to government policies (see Kehoe and Nicolini, 2022 for LatAm)
- \rightarrow Capital flows are of first-order importance in EMEs

Volatile Capital Flows in EMEs

Figure: Capital Flows as % of GDP (1991-2023)



Capital Account Policies in EMEs

- \rightarrow EME have a long history of high price instability often related to government policies (see Kehoe and Nicolini, 2022 for LatAm)
- → Capital flows are of first-order importance in EMEs
- → KA policies are extensively and intensively used in EMEs

Capital Account Policies in EMEs

Figure: Share of 'Gates' and 'Walls' (1995-2019)

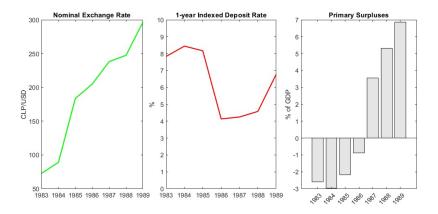
Notes: Share of 'Gates' and 'Walls' using the capital account openness index in Fernández et al., 2015.

My Paper

- \rightarrow In this paper I study:
 - 1. How capital account policies interact with monetary and fiscal policies in a ${\it SOE}$
 - 2. What these interactions mean for the effects of government policies on inflation and exchange rates
- \rightarrow MFK framework is extension of closed economy M-F interactions framework in Cochrane, 1998; Leeper, 1991; Woodford, 1994 to a SOE

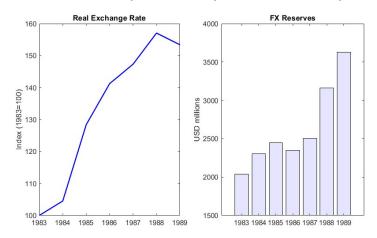
Today's Agenda

- → New 'capital account dominance' regime (Regime K) where KAP targets RER:
 - **1** Implications for π and ER dynamics
 - KAP is sole policy source of inflation and ER surprises
 - Higher interest rates fail to lower current π and raise future π (Sargent and Wallace, 1981)
 - Well-anchored inflation expectations depend on stable path of external debt.
 - 2 Regime K carries over to other KA policy instruments (tariffs,FXI)
 - RER depreciation policies are **contractionary** $(\pi < 0)$
 - M-F policies consistent with RER depreciation policies are higher real interest rates and higher taxes
- → [If time] 'OE monetary dominance' regime
 - lacktriangledown targeting in EME requires **joint support** from F and KA policies

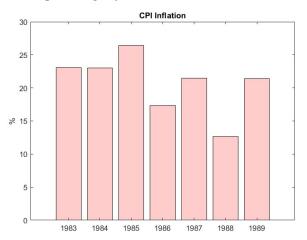

Case of Chile

Chile in the 1980s

- After severe financial crisis and recession in 1982, growth was low, capital inflows dried up, and the RER had appreciated sharply
- The focus of government policies was to foster export-led growth by depreciating the RER
- Implemented so-called 'PPP rule'
 - \rightarrow Nominal devaluations announced ('tablita') based on inflation differentials between the US and Chile to be as close as possible to PPP i.e. $Q_t=1$
- Capital account was heavily regulated by the government


Chile in the 1980s – Empirical Evidence

- MP: nominal devaluations and falling real rates
- FP: increasing surpluses


Chile in the 1980s – Empirical Evidence

- RER depreciated by 53% between end of 1983 and end of 1989
- FX reserves increased by 78% in USD (9.8% to 12.1% of GDP)

Chile in the 1980s – Empirical Evidence

• Inflation averaged 20% per year

Chile in the 1980s

 \bullet High π should create strong appreciation pressures on RER

$$Q_t = \frac{e_t P_t^*}{P_t}$$

- How was policy able to depreciate the NER by $\approx 30\%$ per year and keep inflation from spiraling?
- Did FX accumulation and higher fiscal surpluses play a role?
- MFK framework can help us understand this episode

Model

Model

- Simplified two-country SOE model
- 3 government policies (M, F, and KA) subject to a consolidated government budget constraint
- Economic environment:
 - 2 tradable goods (home and foreign)
 - 2 one-period nominal government bonds B_t, B_t^* (home and foreign)
 - HHs receive endowment y_t each period
 - ullet HHs exhibit bias in consumption + unit trade elasticity:

$$C_t = C_{Ht}^{1-\gamma} C_{Ft}^{\gamma} \quad ; \quad P_t = P_{Ht}^{1-\gamma} P_{Ft}^{\gamma}$$

- Domestic HH borrow from foreign markets at constant rate R^* and save in domestic government bonds with return R_t
- Only sources of uncertainty are policy shocks

Government

- MP sets $\{R_t\}$ while FP sets $\{\tau_t\}$ and issues B_t
- I consider three different KAP instruments: (τ_t^c, T_t, A_t^*)
- Government consolidated budget constraint:

$$\underbrace{P_t \tau_t}_{\text{tax revenue}} + \underbrace{\frac{B_t}{R_t}}_{\substack{\text{bond} \\ \text{issuances}}} + \underbrace{\tau_t^c n f l_t}_{\substack{\text{K revenues}}} = \underbrace{B_{t-1}}_{\substack{\text{government} \\ \text{liabilities}}}$$
(1)

• et: nominal exchange rate (units of LC per unit of FC)

Government

- MP sets $\{R_t\}$ while FP sets $\{\tau_t\}$ and issues B_t
- I consider three different KAP instruments: (τ_t^c, T_t, A_t^*)
- Government consolidated budget constraint:

$$\underbrace{P_t \tau_t}_{\text{tax revenue}} + \underbrace{\frac{B_t}{R_t}}_{\substack{\text{bond} \\ \text{issuances}}} + \underbrace{T_t M_t}_{\substack{\text{tariff revenue} \\ \text{liabilities}}} = \underbrace{B_{t-1}}_{\substack{\text{government} \\ \text{liabilities}}}$$
(2)

• et: nominal exchange rate (units of LC per unit of FC)

Government

- MP sets $\{R_t\}$ while FP sets $\{\tau_t\}$ and issues B_t
- I consider three different KAP instruments: (τ_t^c, T_t, A_t^*)
- Government consolidated budget constraint:

$$\underbrace{P_{t}\tau_{t}}_{\text{tax revenue}} + \underbrace{\frac{B_{t}}{R_{t}}}_{\text{bond}} - \underbrace{e_{t}\left(\frac{A_{t}^{*}}{R^{*}} - A_{t-1}^{*}\right)}_{\Delta \text{ FX reserves}} = \underbrace{B_{t-1}}_{\text{government liabilities}}$$
(3)

• e_t : nominal exchange rate (units of LC per unit of FC)

Households

• Representative household maximizes:

$$\sum_{t=0}^{\infty} \beta^t u(C_t)$$

subject to

$$P_{Ht}C_{Ht} + P_{Ft}C_{Ft} + \frac{B_{Ht}}{R_t} + e_t D_{t-1}^* = P_t(y_t - \tau_t) + \frac{e_t D_t^*}{R^*(1 + \tau_t^c)} + B_{Ht-1}$$
 (4)

- B_{Ht} : domestic holdings of domestic government debt B_t
- D_t^* : external borrowing (in foreign currency)
- P_{Ht}, P_{Ft} : local currency prices of home and foreign good
- τ_t^c, T_t : capital inflow tax / tariffs rate
- y_t : Household income (exogenous endowment)

Households

• Representative household maximizes:

$$\sum_{t=0}^{\infty} \beta^t u(C_t)$$

subject to

$$P_{Ht}C_{Ht} + (1+T_t)P_{Ft}C_{Ft} + \frac{B_{Ht}}{R_t} + e_tD_{t-1}^* = P_t(y_t - \tau_t) + \frac{e_tD_t^*}{R^*} + B_{Ht-1}$$
 (5)

- B_{Ht} : domestic holdings of domestic government debt B_t
- D_t^* : external borrowing (in foreign currency)
- \bullet P_{Ht}, P_{Ft} : local currency prices of home and foreign good
- τ_t^c, T_t : capital inflow tax / tariffs rate
- y_t : Household income (exogenous endowment)

Current Account Condition

• The country's budget constraint (i.e current account condition):

$$\underbrace{\frac{B_{Ft}}{R_t} + \frac{e_t D_t^*}{R^*}}_{\text{foreign borrowing}} + \underbrace{\tau_t^c \frac{B_{Ft}}{R_t}}_{\text{K control revenues}} - \underbrace{\left(B_{Ft-1} + e_t D_{t-1}^*\right)}_{\text{foreign liabilities}} = \underbrace{P_{Ft} C_{Ft} - e_t P_{Ht}^* C_{Ht}^*}_{\text{trade deficit (M-X)}} \tag{6}$$

- B_{Ft} are foreign holdings of domestic government debt $(B_t = B_{Ht} + B_{Ft})$
- CA reflects KA = -CA

Current Account Condition

• The country's budget constraint (i.e current account condition):

$$\underbrace{\frac{B_{Ft}}{R_t} + \frac{e_t D_t^*}{R^*}}_{\text{foreign borrowing}} - \underbrace{\left(B_{Ft-1} + e_t D_{t-1}^*\right)}_{\text{foreign liabilities}} = \underbrace{\left(1 + T_t\right) P_{Ft} C_{Ft} - e_t P_{Ht}^* C_{Ht}^*}_{\text{trade deficit (M-X)}} \tag{7}$$

- B_{Ft} are foreign holdings of domestic government debt $(B_t = B_{Ht} + B_{Ft})$
- CA reflects KA = -CA

Current Account Condition

• The country's budget constraint (i.e current account condition):

$$\underbrace{\frac{B_{Ft}}{R_t} + \frac{e_t D_t^*}{R^*}}_{\text{foreign borrowing}} - \underbrace{e_t(\frac{A_t^*}{R^*} - A_{t-1}^*)}_{\Delta \text{ FX reserves}} - \underbrace{\left(B_{Ft-1} + e_t D_{t-1}^*\right)}_{\text{foreign liabilities}} = \underbrace{P_{Ft} C_{Ft} - e_t P_{Ht}^* C_{Ht}^*}_{\text{trade deficit (M-X)}} \tag{8}$$

- B_{Ft} are foreign holdings of domestic government debt $(B_t = B_{Ht} + B_{Ft})$
- CA reflects KA = -CA

Intertemporal Equilibrium Conditions

1. Intertemporal government solvency condition (IGBC):

$$\underbrace{\frac{B_{Ht-1} + B_{Ft-1}}{P_t}}_{\text{total outstanding gov liab}} = \tau_t + \sum_{j=1}^{\infty} \mathbb{E}_t \Theta_{t+j} (\tau_{t+j} + Krev_{t+j})$$
(9)

2. Intertemporal CA solvency condition (ICA):

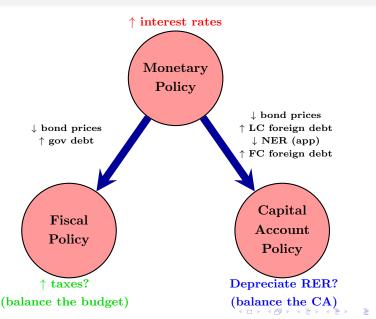
$$\underbrace{\frac{B_{Ft-1} + e_t D_{t-1}^*}{P_t}}_{\text{total outstanding NFLs}} = \underbrace{tb_t + \sum_{j=1}^{\infty} \mathbb{E}_t \Theta_{t+j} (tb_{t+j} + Krev_{t+j})}_{\text{PV of external surpluses}}$$
(10)

where
$$Krev_t = (\tau_{t-1}^c nfl_t, T_t M_t, -\frac{e_t \Delta A_t^*}{P_t})$$

 \rightarrow Connect equilibrium P_t and e_t to MFK policies

Intertemporal Equilibrium Conditions

• IGBC into GBC implies:


$$\underbrace{\frac{B_t}{R_t P_t}}_{\text{Market value of gov liab}} = \underbrace{\sum_{j=1}^{\infty} \mathbb{E}_t \Theta_{t+j} (\tau_{t+j} + Krev_{t+j})}_{\text{PV of future gov surpluses}}$$
(11)

• ICA into CA condition implies:

$$\underbrace{\frac{B_{Ft}}{R_t P_t} + \frac{e_t D_t^*}{R^* P_t}}_{\text{Market value of NFLs}} = \sum_{j=1}^{\infty} \mathbb{E}_t \Theta_{t+j} (tb_{t+j} + Krev_{t+j}) \tag{12}$$

- ightarrow MP related to FP and KAP through market value of government debt
- \rightarrow MP related to KAP through market value of external debt

Example of Policy Interaction

3 Policy Regimes

Does FP raise taxes after a M tightening? Does KAP let the RER depreciate after a M tightening?

- \rightarrow 3 policy regimes emerge from answers to these questions:
 - ① OE Monetary dominance: FP and KAP accommodate to MP (OE NK)
 - ② OE Fiscal dominance: MP and KAP accommodate to FP
 - 3 Capital Account dominance: MP and FP accommodate to KAP
 - 1 and 2 are extensions of closed economy regimes (Blanchard, 2004; Leeper, 1991; Sargent and Wallace, 1981)
 - Focus on third (new) case where KA policy 'dominates'

Capital Account Dominance w. K controls

• What is 'Capital Account Dominance'?

- \implies When KAP sets $\{\tau_t^c\}$ to target the RER with no concern for CA solvency ('active' in Leeper, 1991)
 - → How? Usually RER adjusts to clear FX market (satisfy CA condition)
 - \rightarrow But τ_t^c introduces a wedge between mg benefit and mg cost of foreign borrowing:

$$\underbrace{u'(C_t)Q_t}_{\text{utility of 1 unit of FC}} = \underbrace{(1+\tau_t^c)}_{\text{PV of debt repayment utility cost}} \underbrace{R^*\frac{\beta}{\pi^*}\mathbb{E}_t\left[u'(C_{t+1})Q_{t+1}\right]}_{\text{PV of debt repayment utility cost}}$$


 \rightarrow K controls as a policy-based market segmentation (Gabaix and Maggiori, 2015)

Capital Account Dominance w. K controls

• If $u(C) = \log C$, equilibrium RER is:

$$\frac{Q_t}{Q} = \frac{z_{t,\infty} \frac{y_t}{y}}{1 + \frac{Q\gamma^* y^*}{y} (z_{t,\infty} \frac{y_t^*}{y^*} - 1)} \quad ; \quad z_{t,\infty} \equiv \mathbb{E}_t \prod_{j=0}^{\infty} (1 + \tau_{t+j}^c)$$
(13)

- If KAP can (credibly) announce an arbitrary sequence $\{\tau_t^c\}$, it can effectively choose any Q_t
- ullet e.g. KAP could choose a Q_t that doesn't (all else constant) satisfy CA condition
- Capital account policies used in EMEs showed to respond to this 'mercantilist' motive i.e. use KAP to undervalue the country's RER (Dooley et al., 2004; Jeanne, 2013; Korinek and Serven, 2016; Pasricha, 2022)

Price Level Determination in Regime K

- \rightarrow By targeting the RER, KAP also uniquely determines equilibrium P_t
- \rightarrow Intertemporal CA condition equates real NFLs to PV(tb), then:

$$P_t = \frac{B_{Ft-1}}{PV(tb) - \frac{Q_t D_{t-1}^*}{P^*}}$$
 (14)

 \rightarrow Usually PV(tb) is endogenous. In Regime K,

$$PV(tb) = \sum_{j=0}^{\infty} \beta^{j} \mathbb{E}_{t} \underbrace{\left(\frac{y_{t} - Q_{t} \gamma^{*} y_{t}^{*}}{y_{t+j} - Q_{t+j} \gamma^{*} y_{t+j}^{*}}\right)}_{1/(1+r_{t+j})} z_{t,t+j-1} \underbrace{\frac{Q_{t+j} \gamma^{*} y_{t+j}^{*} - \gamma y_{t}}{1 - \gamma}}_{tb_{t+j}}, \quad z_{t,t-1} = 1$$

since $Q_t = Q(\lbrace \tau_t^c \rbrace) \ \forall t$

- \rightarrow One-time increase in τ_t^c lowers inflation through two channels:
 - **1** higher $Q_t \to \text{higher exports} \to \text{lower C} \to \text{lower } \pi$
 - 2 higher $Q_t \to \text{higher real interest rates} \to \text{lower C} \to \text{lower } \pi$

Capital Account Dominance w. Tariffs

• What is 'Capital Account Dominance' with tariffs?

- \implies When KA (trade) policy sets $\{T_t\}$ to target the RER
 - → Tariffs also enter as a wedge on the foreign bond pricing equation (akin to a consumption tax):

$$u'(C_t)Q_t(1+T_t)^{-\gamma} = R^* \frac{\beta}{\pi^*} \mathbb{E}_t \left[u'(C_{t+1})Q_{t+1}(1+T_{t+1})^{-\gamma} \right]$$

 \rightarrow If $u(C) = \log C$, equilibrium RER is

$$\frac{Q_t}{Q} = \frac{z_t \frac{y_t}{y}}{1 + \frac{Q\gamma^* y^*}{y} (z_t \frac{y_t^*}{y^*} - 1)} \quad ; \quad z_t \equiv \left(\frac{1 + T_t}{1 + T}\right)^{\gamma} \tag{15}$$

 \rightarrow KA (trade) policy can use tariffs to choose any path $\{Q_t\}$ of the RER

Capital Account Dominance w. Tariffs

 \rightarrow Price level is again pinned down by intertemporal CA:

$$P_t = \frac{B_{Ft-1}}{PV(tb) - \frac{Q_t D_{t-1}^*}{P^*}}$$
 (16)

with PV(tb) policy-determined

- \rightarrow One-time increase in T_t also **lowers** inflation:
 - **1** higher Q_t → higher exports → lower C → lower π
 - 2 higher $Q_t \to \text{higher real interest rates} \to \text{lower C} \to \text{lower } \pi$

Capital Account Dominance w. FXI

• What is 'Capital Account Dominance' with FXI?

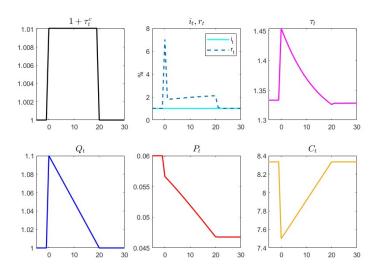
- \implies When KAP uses FX reserves $\{A_t^*\}$ and KA restrictions to target the RER (Chile in 1980s)
 - \rightarrow In Chile, policy consisted of scheduled nominal devaluations $\{\bar{e}_t\}$ and FX reserves $\{A_t^*\}$ to 'defend' the ER (+ regulated KA)
 - \rightarrow Assume government completely closes KA ($B_{Ft} = D_t^* = 0$):

$$\bar{e}_{t}(\underbrace{\frac{A_{t}^{*}}{R^{*}} - A_{t-1}^{*}}_{\Delta A_{t}^{*}}) + \bar{e}_{t}D_{t-1}^{*} + B_{Ft-1} = \frac{e_{t}P^{*}\gamma^{*}y_{t}^{*} - \gamma P_{t}y_{t}}{1 - \gamma}$$

→ No wedge in this case, but government still segments market by directly restricting K flows (could pair FXI with K controls to same effect e.g. Choi and Taylor, 2017)

Capital Account Dominance w. FXI

→ Under these policies, the price level is pinned down by flow CA condition:


$$P_{t} = \frac{\bar{e}_{t} P_{t}^{*} \gamma^{*} y_{t}^{*} - (1 - \gamma)(\bar{e}_{t} \Delta A_{t}^{*} + \bar{e}_{t} D_{t-1}^{*} + B_{Ft-1})}{\gamma y_{t}}$$

 \rightarrow KA policy can then choose the RER using (\bar{e}_t, A_t^*) :

$$Q_t = \frac{\bar{e}_t P_t^*}{P(\bar{e}_t, A_t^*)}$$

- \rightarrow Nominal devaluations + Reserve accumulation consistent with high π and depreciation of RER as in Chile in the 80s
- \rightarrow Reserves accumulation partially offset inflationary effect of nominal devaluation by creating expectations of higher taxes

Policy Experiment – Simulated Economy

Monetary Policy under Capital Account Dominance

- What is a consistent monetary policy in Regime K?
- Depreciation of RER (using τ_t^c, A_t^*, T_t) raises real interest rates:

$$\uparrow r_{t+1} \equiv \beta^{-1} \frac{C_{t+1}}{\downarrow C_t}$$

- Equilibrium MP ensures HHs are still willing to hold government debt
- It does so by adjusting i_t by less than 1-to-1 with inflation

$$\uparrow r_{t+1}^b = \downarrow i_t - \biguplus \mathbb{E}_t \pi_{t+1}$$

 \implies 'Passive' MP equates the real return of gov bonds r_{t+1}^b to r_{t+1}

! If MP targets π and increases i_t by more than 1-to-1:

$$\downarrow r_{t+1}^b = \downarrow \downarrow i_t - \downarrow \mathbb{E}_t \pi_{t+1} < \uparrow r_{t+1}$$

Monetary Policy under Capital Account Dominance

- What are the effects of higher interest rates on π in Regime K?
- Higher R_t reduce bond prices and increase external indebtedness B_{Ft}, D_t^*

$$\mathbb{E}_{t} \left[\frac{B_{Ft}}{P_{t+1}} + \frac{Q_{t+1}D_{t}^{*}}{P_{t+1}^{*}} \right] = \sum_{j=0}^{\infty} \mathbb{E}_{t} \Theta_{t+j} (tb_{t+j+1} + Krev_{t+j+1})$$
outstanding NFLs at $t+1$

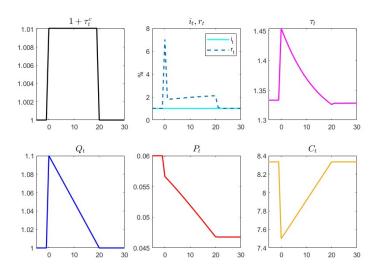
- $\{Q_t\}$ already pinned down by KA policy $\to PV(tb)$ fixed
- Expected P_{t+1} (and e_{t+1}) rises to eliminate domestic and foreign WE $\rightarrow P_t$ unchanged as HH real wealth constant in eqm
- ... Monetary tightening fails to reduce current inflation and raises future inflation (Sargent and Wallace, 1981)

Inflation Expectations in Regime K

- \rightarrow What drives π expectations in Regime K?
- \rightarrow From expression for eqm P_t can write:

$$\mathbb{E}_{t}[\hat{\pi}_{t+j}] = \mathbb{E}_{t}[\hat{b}_{Ft+j-1} + \hat{d}_{t+j-1}^{*}] - \mathbb{E}_{t}[\widehat{PV_{t+j}(tb)}], \quad \forall j \ge 1$$

- \rightarrow If KAP not expected to change after $t \implies \pi$ expectations linked one-to-one to path of external debt
- \rightarrow News about sustainability of external debt directly impact π expectations
- \rightarrow Anchored and stable inflation expectations under RER policies hinge on stable path of external debt


Fiscal Policy under Capital Account Dominance

- What is a consistent fiscal policy in Regime K?
- Government must be intertemporally solvent for any equilibrium P_t, Q_t chosen by KAP:

$$\frac{B_{Ht-1} + B_{Ft-1}}{\downarrow P_t} = \tau_t + \sum_{j=1}^{\infty} \mathbb{E}_t \downarrow \Theta_{t+j} (\tau_{t+j} + Krev_{t+j})$$

- Lower P_t raises real debt B_{t-1}/P_t , and higher real rates lower $PV(\tau)$
- First two cases, there is a Laffer curve on Krev since higher τ_t^c, T_t reduce $nfl_t, M_t \implies$ fiscal effect limited
- Equilibrium fiscal policy raises taxes to make up for higher liabilities and lower PV of taxes

Policy Experiment – Simulated Economy

Fiscal Policy under Capital Account Dominance

- In case with FXI, Krev is negative as KA policy needs to buy reserves
- Consistent FP unambiguously raises taxes to finance accumulation of reserves:

$$\frac{B_{Ht-1} + B_{Ft-1}}{\downarrow P_t} = \sum_{j=0}^{\infty} \mathbb{E}_t \downarrow \Theta_{t+j} \left(\tau_{t+j} - \uparrow \frac{Q_{t+j} \Delta A_{t+j}^*}{P_{t+j}^*} \right)$$

• In Chile example, $\uparrow P_t$ and $Q_{t+1} > Q_t \implies \downarrow r_{t+1}$

$$\frac{B_{Ht-1} + B_{Ft-1}}{\uparrow P_t} = \sum_{j=0}^{\infty} \mathbb{E}_t \uparrow \Theta_{t+j} \left(\tau_{t+j} - \uparrow \uparrow \frac{\uparrow Q_{t+j} \uparrow \Delta A_{t+j}^*}{P_{t+j}^*} \right)$$

• Increase in FX purchases represented 1/3 of extra surpluses generated over 83-89 period (2.4% of 7.9% of GDP)

Consistent Monetary-Fiscal Policies

- Consistent monetary and fiscal policies under RER-depreciating policies are **contractionary**
 - MP allows for higher real interest rates
 - FP increases surpluses (taxes)
- EMEs experiences with such RER policies using K controls and FXIs usually spurred growth from boosting export sector
- RER policy using tariffs unlikely to have same effects (consumption tax)

Inflation Targeting in EMEs

- What is 'OE Monetary Dominance'?
- When MP sets $\{R_t\}$ to target inflation with no concerns over GBC/CA
- Imposes restrictions on what equilibrium FP and KAP can be

$$\frac{B_t}{R_t P_t} = \sum_{j=1}^{\infty} \mathbb{E}_t \Theta_{t+j} (\tau_{t+j} + Krev_{t+j})$$

$$\frac{B_{Ft}}{R_t P_t} + \frac{e_t D_t^*}{R^* P_t} = \sum_{j=1}^{\infty} \mathbb{E}_t \Theta_{t+j} (tb_{t+j} + Krev_{t+j})$$

- If MP raises interest rates:
 - Fiscal policy creates future surpluses to pay for higher government debt
 - Capital account policy creates higher future trade surpluses to pay for higher external debt
- Concept of policy 'backing' (Cochrane, 2011; Sims, 2005)

Inflation Targeting in EMEs

• When do higher interest rate lower inflation in EMEs?

Corollary 1

A monetary tightening lowers inflation on impact if and only if it is accompanied by a fiscal <u>and</u> KA tightening

- Fiscal and capital account backing are necessary conditions for the existence of an eqm where CB targets inflation
- Fiscal and Capital account policy behavior as central to success of π targeting (MP can't go-it-alone)
- Lack of either policy backing creates 'perverse' effects of MP (unchanged π_t and higher π_{t+1} after higher i_t)

Conclusion

- \rightarrow Framework of M-F-K interactions gives coherent story for GE effects of KA policies (K controls, tariffs, FXIs)
- \rightarrow M-F policies consistent with RER depreciation policies (e.g. to reduce trade deficits) have **contractionary** effects on π ($\uparrow r_{t+1}, \uparrow \tau_t$)

 Other GE effects could partly offset this effect in richer model (e.g. higher MC for firms)
- \to Important policy implication for π targeting EMEs \to FP and KAP both contractionary after interest rate hike to lower π
- → Rising use of these policies in EMEs (and AEs) suggests a MFK framework increasingly useful for: i) interpreting macroeconomic data and ii) future policy design in the face of KA policy shocks